Quality Assurance and Quality Control for Trace Gas Observations within GAW

Martin Steinbacher

Empa, Laboratory for Air Pollution / Environmental Technology & GAW Quality Assurance/Scientific Activity Centre (QA/SAC Switzerland), Dübendorf, Switzerland

with contributions from NOAA-ESRL, ICOS & WCC-Empa

GAW Quality Management Framework

map of GAW stations

GAW Implementation Plan 2016-2023, GAW Report Nr. 228, 2017

Quality Management Framework for Reactive Gases

Martin G. Schultz^{1*} • Hajime Akimoto^{3,1} Jan Bottenheim⁴ • Brigitte Buchmann⁵ • Ian E. Galbally⁶ • Stefan Gilge⁶ • Detlev Helmig⁶ • Hiroshi Koide⁶ • Alastair C. Lewis^{2*} • Paul C. Novelli^{1*} • Christian Plass-Dilmer⁷ · Homas B. Ryerson¹¹ · Martin Steinhache⁷ • Rainer Steinbrecher² • Oksana Tarasova¹³ • Kjetil Torsteth⁴ • Valeric Thouret¹⁵ • Christoph Zellweger⁷

Elementa: Science of the Anthropocene * 3: 000067 * doi: 10.12952/journal.elementa.000067 elementascience.org

Schultz et al., Elementa, 2015

GAW's Central Facilities – the Trace Gas Perspective

GAW Central Facilities

Variable	Quality Assurance / Science Activity Centre	Central Calibration Laboratory	World Calibration Centre	Regional Calibra- tion Centres	World Data Centre
CO2	JMA (Asia, South- West Pacific)	NOAA-ESRL	NOAA-ESRL (round robin)		JMA
			Empa (audits)		
CO ₂ Isotopes		MPI-BGC			AML
CH4	Empa (Americas, Europe, Africa)	NOAA-ESRL	Empa (Americas, Europe, Africa)		JMA
	JMA (Asia, South- West Pacific)		JMA (Asia, South- West Pacific)		
N ₂ O	UBA	NOAA-ESRL	KIT/IMK-IFU		JMA
SF_6		NOAA ESRL	KMA-KGAWC		AML
CFCs, HCFCs, HFCs					AML
Surface Ozone	Empa	NIST	Empa	OCBA (South America)	NILU
со	Empa	NOAA-ESRL	Empa		AML
vocs	UBA	NPL (Ethane, Pro- pane, n-butane, n- pentane, Acetyle- ne, Toluene, Benzene, Isoprene) NIST (monoter- penes)	KIT/IMK-IFU		NILU
NO _x	UBA	NPL (NO)	FZJ (IEK-8) (NO)		NILU
SO2					NILU

GAW Implementation Plan 2016-2023, GAW Report Nr. 228, 2017

Example – CCL for CO2 (NOAA-ESRL)

For greenhouse gases, primary standards are prepared gravimetrically by mixing aliquots of pure gaseous or liquid reagents with ultra-pure air, and are calibrated manometrically by measuring temperature and pressure in welldefined volumes of the whole air and the cryogenically trapped species of interest.

Propagation of the scale at CCL

https://www.esrl.noaa.gov/gmd/ccl/airstandard.html

Targeted compatibility for CO2 within GAW

Recommended compatibility of greenhouse gas measurements							
Component	Compatibility goal 1-sigma	Extended compatibility goal ¹	Range in unpolluted troposphere (approx. range for 2015)	Range covered by the WMO scale			
<i>CO</i> ₂	± 0.1 ppm (North.Hem.) ± 0.05 ppm (So.Hemisph)	± 0.2 ppm	380 - 450 ppm	250 – 520 ppm			
CH_4	± 2 ppb	± 5 ppb	1750 – 2100 ppb	300 – 5900 ppb			
СО	± 2 ppb	± 5 ppb	30 – 300 ppb	30 -500 ppb			
N ₂ O	± 0.1 ppb	± 0.3 ppb	325 – 335 ppb	260 – 370 ppb			
SF ₆	± 0.02 ppt	± 0.05 ppt	8 – 10 ppt	2.0 – 20 ppt			
H_2	± 2 ppb	± 5 ppb	400 – 600 ppb	140 –1200 ppb			
$\delta^{13}C$ - CO_2	± 0.01‰	± 0.1‰	-9.5 to -7.5‰ (VPDB)				
δ ¹⁸ O-CO ₂	± 0.05‰	± 0.1‰	-2 to +2‰ (VPDB-CO ₂)				
$\Delta^{14}C-CO_2$	± 0.5‰	± 3‰	-50 to 50‰				
$\Delta^{14}C-CH_4$	± 0.5‰		50-350‰				
$\Delta^{14}C-CO$	± 2 molecules cm ⁻³		0-25 molecules				
δ ¹³ C-CH ₄	± 0.02‰	± 0.2‰	cm ⁻³				
δD -CH ₄	± 1‰	± 5‰					
O_2/N_2	± 2 per meg	± 10 per meg	-900 to -400 per meg (vs. SIO scale)				

. c . .

Typical plumbing design for CO2 observations

Shelter

ICOS Atmospheric Station Specification Document https://www.icos-ri.eu/documents/ATC%20Public

Frequency of calibrations depending on the time-scale of sensitivity changes of the analyzer

Calibration frequency for CO2 observations

Zellweger et al., AMT, 2016

"A thorough analysis of the CO2 and CH4 stability of [this type of cavity enhanced laser spectrometer] indicates that the optimal calibration frequency is approximately 30 h."

Calibration frequency for CO2 observations

2018 Meeting of the Science Advisory Group for Aerosols, Geneva, 10 July 2018

ICOS ATC (Atmospheric Thematic Center), screenshots

1(

Towards strong standardization within Europe

• the Integrated Carbon Observation System (ICOS) example

ICOS: a pan-European research infrastructure which provides harmonized and high precision data on carbon cycle and greenhouse gas budget and perturbations

https://www.icos-cp.eu

- standardized instruments and procedures
- central provision of reference gases
- central data processing and data dissemination

Round Robin Exercises for Greenhouse Gases

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

- established in 1996, more than 90 audits since then
- ensures traceability to the GAW reference and determines compatibility
- assists stations with regards to instruments and measurement issues (WCC-Empa & QA/SAC-CH)
- improves technical know-how at stations through on-site training (WCC-Empa & QA/SAC-CH)

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

World Calibration Centre for Surface O3, CO, CH4, and CO2 (WCC-Empa)

Audit reports are publicly available at https://gawsis.meteoswiss.ch/ www.empa.ch/gaw, and http://www.wmo.int/pages/prog/arep/gaw/other_pub.html

WCC-Empa audit in Pallas (Finland) (April 2012)

2018 Meeting of the Science Advisory Group for Aerosols, Geneva, 10 July 2018

NITROUS OXIDE AT THE

> CAPE POINT SOUTH AFRICA

9

Traceability for surface ozone measurements

- Each NIST Standard Reference Photometer (SRP) is a realisation of a Primary Standard
- CCL is NIST, which maintains SRP#2 (=reference for GAW), but SRP#X is also a primary standard
- The 'SRP family', which defines the O₃ reference, is inter-compared in an ongoing Key Comparison organized by BIPM (www.bipm.org)

Calibration (and auditing) of surface O3 analyzers

Reference: Standard Reference Photometer (SRP)

World reference: SRP #2 at National Institute for Standards and Technology

Currently: approx. 60 SRPs worldwide

Transfer standard / calibrator is calibrated against a reference photometer and used for the calibration of ozone instruments

Traceability chain:

Table 1 - Example of an uncertainty budget of an ozone analyser

Component (y)	Source	Distribution	Contribution to $u(x)$
Imperfect calibration / linearity	Comparison between TS and OA	Rectangular	0.0017· <i>x</i> *
Repeatability	Instrument stability	Rectangular	0.0016· <i>x</i>
Span drift	Instrument stability	Rectangular	0.0040· <i>x</i>
Zero drift	Instrument stability	Rectangular	0.17
Pressure P	Pressure measurement	Rectangular	0.0002· <i>x</i>
Temperature T	Temp. measurement	Rectangular	0.0005· <i>x</i>
H ₂ O interference	Interference in the UV		0.0060· <i>x</i>
Other interferences	Interference in the UV		0.6
Sampling loss (Inlet)	Inlet material, dirt	Rectangular	0.0014· <i>x</i>

* where x refers to ozone mole fraction

A conservative estimate of the total uncertainty can now be obtained by combing the uncertainties of the ozone analyser (13), the transfer standard (12) and the primary reference (11).

$$u(O_3) = \sqrt{(0.81)^2 + (0.0089 \times O_3)^2}$$
 nmol mol⁻¹

Intercept vs. slope plot for 559 calibrations of various ozone analysers with transfer standards within the Swiss National Air Pollution Monitoring Network between November 2005 and April 2017

O3 measurement guidelines, GAW Report Nr. 209, 2013

2018 Meeting of the Science Advisory Group for Aerosols, Geneva, 10 July 2018

18

(14)

- Central Facilities are assigned for most of the trace gases targeted in GAW
- Traceability chains and network wide quality control activities are in place
- Maximum possible homogenization of the observations vs.

"WMO recognizes the importance of <u>independent</u> measurement methods, calibration scales and calibration techniques that are consistent with the data quality objectives quality control, transparency and traceability defined elsewhere in this document. The goal of this diversity is to assure that the global atmospheric measurement enterprise remains robust and less vulnerable to systematic or method-specific error. A key component of this diversity is the rigorous and frequent comparison of independent methods."

GGMT-2015 Report, GAW Report Nr. 229, 2016

