

Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

The revised CO₂ calibration scale at the World Calibration Centre WCC-Empa

Christoph Zellweger¹, Martin Steinbacher¹, Lukas Emmenegger¹, and Brigitte Buchmann²

(1) Empa, Laboratory for Air Pollution / Environmental Technology, Duebendorf, Switzerland (<u>christoph.zellweger@empa.ch</u>)
 (2) Empa, Department Mobility, Energy and Environment, Dübendorf, Switzerland

World Calibration Centre WCC-Empa

- Supports global research and policies since 1996
- More than 100 station audits at mainly global GAW stations
- Covers four important greenhouse and reactive gases
- Collaborates with other calibration centres to improve traceability
- Assesses the performance of stations also with parallel measurements
- Audit procedure includes data and metadata review

Audited stations by WCC-Empa since 1996 (red triangles)

Scope (top) and cumulative number (bottom) of WCC-Empa audits

@ WCC-Empa we have

christoph.zellweger@empa.ch

eGMAC 2021

Zero air system

WCC-Empa zero air system

Oil free compressor (JunAir model 2XOF302-40BQ) with adsorption dryer (dew point < -40°C) Oxidation catalyst (Breitfuss NBS) Aadco Pure Air generator (737-12A) Ascarite and magnesium perchlorate

compared to

😉 Empa

- Pure Nitrogen 99.9999%
- Same CO₂ and CH₄ content (zero) within uncertainties

Date/Time [YY-MM-DD hh

Instrument linearity

- WCC-Empa zero air system was used to dilute a standard gas
- Excellent linearity of the Picarro G2401 was observed for both CO₂ and CH₄
- Residuals were smaller than WMO/GAW compatibility goals
 (0.1 ppm for CO₂, and 2 ppb for CH₄)

😉 Empa

✓ Zero air

✓ Linearity

Picarro was calibrated with one standard (CB09915) and CO₂ free air

- Picarro was calibrated with one standard (CB09915) and CO₂ free air
- All other NOAA standards were measured against CB09915
- Agreement within 0.1 µmol mol⁻¹ except for two standards

🧐 Empa

- Picarro was calibrated with one standard (CB09915) and CO₂ free air
- All other NOAA standards were measured against CB09915
- Agreement within 0.1 µmol mol⁻¹ except for two standards
- One standard outside the range defining the scale
- One standard is old (2003)

NOAA CO_2 value (µmol mol⁻¹) (WMO- CO_2 -2007 scale)

Date of intial calibration (YYYY)

- Picarro was calibrated with one standard (CB09915) and CO₂ free air
- Values on the X2019 scale were obtained from the CCL website
- The agreement improved on average for the standards on the X2019 CO₂ scale

😉 Empa

- Picarro was calibrated with one standard (CB09915) and CO₂ free air
- Values on the X2019 scale were obtained from the CCL website
- The agreement improved on average for the standards on the X2019 CO₂ scale
- Improvement also for the "old" and the "high" standard
- Range of the X2019 scale extended to 800 ppm
- Trend over time?

Date of intial calibration (YYYY)

eGMAC 2021

CO₂ standard drift

- CC707356 filled by NOAA, April 3, 2020
- Analysis at NOAA from April 29 to June 9
- Small downward trend?

Filling Code A

Date	Loc	Inst F	Pressure	Value	S.D.	Unc*	Num	Avg	Sdev
 2020-04-29	BLD	PC1	2015	419.31	0.01	0.01 *			
2020-05-12	BLD	PC1	2015	419.29	0.01	0.01 .			
2020-05-27	BLD	PC1	2000	419.28	0.01	0.01 .			
2020-06-09	BLD	PC1	2000	419.27	0.01	0.01 .			
							3	419.28	0.01

- Arrived at WCC-Empa July 2020
- Measurements from August 2020 May 2021 showed further decrease of CO₂
- Seems to have stabilized after ~1 year after filling
- Drift since NOAA analysis of ~1 ppm explains the bias for this cylinder

Time since fillin

Time since fillin

CO₂ standard drift

- CO₂ standard gases (in aluminium cylinders, dry, high pressure) are normally stable and not drifting
- However, drift may occur over a certain period after filling due to surface effects, or incomplete mixing
- Quick analysis, preferably within hours after filling, helps to identify drifting cylinders
- Example on the left shows a drifting cylinder filled by WCC-Empa
- This cylinders was measured ~immediately after filling, and then with high frequency during the first weeks
- It took ~1 year to stabilize
- **CO**₂ changed by ~0.25 ppm within one year
- Drift in CO₂ is likely caused by surface effects (because CH₄ is stable)

Time since fillin

Time since fillin

CH₄ consistency check X2004A

- Picarro was calibrated with one standard (CB09915) and CH₄ free air
- All other NOAA standards were measured against CB09915
- Agreement within 2 nmol mol⁻¹ for all NOAA standards
- Amount fraction dependent bias was found

CH₄ consistency check X2004A

- Picarro was calibrated with one standard (CB09915) and CH₄ free air
- All other NOAA standards were measured against CB09915
- Agreement within 2 nmol mol⁻¹ for all NOAA standards
- Amount fraction dependent bias was found
- No dependency on cylinder age

NOAA CH_4 value (nmol mol⁻¹) (WMO- CH_4 -2004A scale)

Date of intial calibration (YYYY)

🧐 Empa

Calibration strategy @ WCC-Empa

Most common: set of standards covering ambient range, linear regression

Step changes are possible when exchanging the set of standards

- Alternative: Inclusion of zero air in case of an internally consistent calibration scale, linear instruments, and reliable zero air
- Reduces step changes
- Depends less on the uncertainty of individual standard
- Gives reliable results beyond the range covered by the set of standards

🧐 Empa

Conclusions

- NOAA maintains calibration standards with high accuracy over decades
- Recent update of the CO₂ scale improved internal consistency
- Function to convert between X2007 and X2019 scale is useful
- CH₄ scale is also internally consistent within the uncertainties
- Progress in analytical instruments enables detection of small changes or inconsistencies
- Not checked: Internal consistency of CO and N₂O scales
- Calibration strategies need to be adjusted to take full advantage of the analytical progress

Thank you!

Acknowledgments

- Financial support of GAW activities by MeteoSwiss
- Staff at various GAW stations and Empa for their support