Table of content:

- \checkmark Introduction
- Materials and Properties of Polymer Matrix Composites
- \checkmark Mechanics of a Lamina
- \checkmark Laminate Theory
- \checkmark Ply by Ply Failure Analysis
- \checkmark Externally Bonded FRP Reinforcement for RC Structures: Overview
- **Flexural Strengthening: Basics**
- **Strengthening in Shear**
- **Column Confinement**
- **CFRP Strengthening of Metallic Structures**
- **FRP Strengthening of Timber Structures**
- **Design of FRP Profiles and all FRP Structures**
- **An Introduction to FRP Reinforced Concrete**
- CFRP Strengthening of Metallic Structures

 FRP Strengthening of Timber Structures

 Design of FRP Profiles and all FRP Sturdtures

 An Introduction to FRP Reinforced Concrete

 Structural Monitoring with Wireless S **Structural Monitoring with Wireless Sensor Networks**
- Composite Manufacturing
- Testing Methods

Flexural strengthening

Book Composite for Construction, L. C. Bank, Chapter 9

Initial situation prior to strengthening

The effect of the initial load prior to strengthening should be considered in the calculation of strengthened member. Based on the theory of elasticity and with M₀ the service moment (*no* load safety factors are applied) acting on the critical RC section during strengthening, the strain distribution of the member can be evaluated. As M₀ is typically larger than the cracking moment M_{cr} , the calculation is based on a cracked section.

Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli If M0 is smaller than Mcr, its influence on the calculation of the strengthened member may easily be neglected.

Based on the transformed cracked section, the neutral axis depth x_0 can be solved from:

$$
\frac{1}{2}bx_0^2 + (\alpha_s - 1)A_{s2}(x_0 - d_2) = \alpha_s A_{s1}(d - x_0)
$$

Where:

$$
\alpha_s = \frac{E_s}{E_c}
$$

Externally Bonded FRP: Flexural
Five Composites, FS24
Masoud Motavalli
5

The concrete strain at the top fiber can be expressed as:

$$
\varepsilon_{c0} = \frac{M_0 x_0}{E_c I_{02}}
$$

Where I_{02} is the moment of inertia of the transformed cracked section:

$$
I_{02} = \frac{bx_0^3}{3} + (\alpha_s - 1)A_{s2}(x_0 - d_2)^2 + \alpha_s A_{s1}(d - x_0)^2
$$

Bonded FRP: Flexural
Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli

Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli

Externally Bonded FRP: Flexural Fibre Composites, FS24 Based on strain compatibility, the concrete strain at the extreme tension fiber can be derived as:

$$
\varepsilon_0 = \varepsilon_{c0} \frac{h - x_0}{x_0}
$$

This strain equals the initial axis strain at the level of the FRP, needed for the evaluation of the strengthened member.

Analysis of Ultimate Limit State (ULS)

Full composite action Steel yielding followed by concrete crushing

7

Calculation of neutral axis depth, x:

$$
0.85.\psi.f_{cd}bx+A_{s2}E_s\varepsilon_{s2}=A_{s1}f_{yd}+A_fE_{fu}\varepsilon_f
$$

Where:

$$
\psi=0.8
$$

and:

and:
\n
$$
\varepsilon_{s2} = \varepsilon_{cu} \frac{x - d_2}{x}
$$
\n($E_s \varepsilon_{s2}$ not to exceed f_{yd})
\n
$$
\varepsilon_f = \varepsilon_{cu} \frac{h - x}{x} - \varepsilon_0
$$
\nExternally Bonded FRP: Flexural

\nFive Composites, FS24

\nMasoud Motavalli

\n8

$$
(\mathsf{E}_{\mathsf{s}} \varepsilon_{\mathsf{s}2} \text{ not to exceed } \mathsf{f}_{\mathsf{yd}})
$$

Design bending moment capacity:

$$
M_{Rd} = A_{s1} f_{yd} (d - \delta_G x) + A_f E_f \varepsilon_f (h - \delta_G x) + A_{s2} E_s \varepsilon_{s2} (\delta_G x - d_2)
$$

Where:

 $\mathcal{S}_G=0.4$
Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli $\delta_G = 0.4$

Check if

a) Yielding of tensile steel reinforcement:

$$
\varepsilon_{s1} = \varepsilon_{cu} \frac{d - x}{x} \ge \frac{f_{yd}}{E_s}
$$

b) Straining of the FRP is limited to the ultimate strain:

b) Straining of the FRP is limited to the ultimate strain:
\n
$$
\mathcal{E}_f = \mathcal{E}_{cu} \frac{h - x}{x} - \mathcal{E}_0 \leq \mathcal{E}_{fid}
$$
\nExtemally Bonded FRP: Flexural

\nFive Composites, FS24

\nMasoud Motavalli

Tee Beams

Neutral axis in flange: treat as rectangular section

Neutral axis in web: treat as tee section

Debonding and bond failure modes

- **Debonding in the concrete near the surface or along a** weakened layer, e.g. along the line of the embedded steel reinforcement.
- **Debonding in the adhesive (cohesion failure).**
- Debonding at the interfaces between concrete and adhesive
or adhesive and FRP (adhesion failure).
Debonding inside the FRP (interlaminar shear failure).
Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motaval **Debonding at the interfaces between concrete and adhesive** or adhesive and FRP (adhesion failure).
- **Debonding inside the FRP (interlaminar shear failure).**

Debonding Video Clips Non Prestressed CFRP Prestressed CFRP

Lap Shear Test

Pull-off Test No. 3

Bond failure of RC members strengthened with FRP:

See next lecture given by Dr. Christoph Czaderski

25

3. Debonding at flexural cracks

$$
\varepsilon_{\rm f} \leq \varepsilon_{\rm f,lim,d} = 8\% \text{,}
$$

 $\vert f \vert \vert < \vert \vert \frac{\angle I \Gamma_f} {\perp} \vert$ \overline{x} $\Big)$ $\Big\{$ $\overline{\Delta x}$ $\Big\}$ $\overline{\Delta x}$ $\Big)$ \cong $\Big(\overline{\Delta x}$

 $\vert \mathsf{F}_{\mathrm{fcr}} \leq \mathsf{F}_{\mathrm{b,R}}$

1. End strip debonding failure at the last crack

Summary of the three Swiss Code (SIA 166) verifications

2. Debonding at strong strain increase in strip

4-Point Bendie test, RC beam
Istrengthened with a CFRP Strip

Serviceability Limit State (SLS)

- **linear elastic material behavior**
- **Cracked section analysis**

Calculation of neutral axis x_e :

$$
\frac{1}{2}bx_e^2 + (\alpha_s - 1)A_{s2}(x_e - d_2) = \alpha_s A_{s1}(d - x_e) + \alpha_f A_f \left[h - (1 + \frac{\varepsilon_0}{\varepsilon_c})x_e \right]
$$

\nWhere:
\n
$$
\alpha_f = \frac{E_f}{E_c}
$$
\nAnd the cracking moment for rectangular beams:
\n
$$
M_{cr} \approx f_{ctrm} \cdot \frac{bh^2}{6}
$$
\nExternally Bonded FRP: Flexural
\nFibre Composites, FS24
\n²⁸

And the cracking moment for rectangular beams:

$$
M_{cr} \approx f_{ctm} \cdot \frac{bh^2}{6}
$$

Stress limitation

limit stresses in the concrete, steel and FRP to prevent

- **damage or excessive creep of the concrete**
- **steel yielding**
- Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli
Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli **Excessive creep or creep rupture of the FRP**

 $\sigma_c \leq 0.60 f_{ck}$ under the rare load combination

 $\sigma_c \leq 0.45 f_{ck}$ under the quasi-permanent load combination

$$
D_c \geq 0.4 J_{ck}
$$
 under the quasi-permanent load combination
where:
$$
\sigma_c = E_c \mathcal{E}_c
$$

Extemally Bonded FRP: Flexural
Five Composites, FS24
Massoud Motavalli
30

To prevent yielding of the steel at service load:

Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli yk e e s s c f x d x ^E . . 0.80 rare load combination

FRP stress under service load should be limited as:

fk e e $f = E_f$. $(\varepsilon_c \cdot \frac{\hbar^2}{\hbar^2} - \varepsilon_0) \leq \eta.f$ \overline{X}_{ϵ} $h - x$ $\sigma_f = E_f . (\varepsilon_c . \frac{E}{m} - \varepsilon_0) \leq \eta.$ $\overline{}$ $\tilde{v} = {E}_f.({\varepsilon}_c.\frac{n - \varepsilon_e}{\sqrt{2}} - {\varepsilon}_0) \leq \eta.f_{\varepsilon_e}$ quasi-permanent load combination

Where
$$
\eta = \begin{cases} 0.8 : CFRP \\ 0.5 : AFRP \\ 0.3 : GFRP \end{cases}
$$

Externally Bonded FRP: Flexural
Five Composites, FS24
Massoud Motavalli
32

Verification of deflections

The mean deflection, a, is calculated from:

$$
a = a_1.(1 - \zeta_b) + a_2.\zeta_b
$$

Where a_1 and a_2 are the deflections in the uncracked and the fully cracked state, respectively and the distribution coefficient is:

Where
$$
a_1
$$
 and a_2 are the deflections in the uncracked and the fully cracked state, respectively and the distribution coefficient is:
\n
$$
\zeta_b = 0 \dots M_k < M_{cr}
$$
\n
$$
\zeta_b = 1 - \beta_1 \beta_2 \cdot \left(\frac{M_{cr}}{M_k}\right)^{n/2} \dots M_k > M_{cr}
$$
\nExtemally Bonded FRP: Flexural
\nFibre Composites, FS24
\nMassoud Motavalli
\n33
\n34

• Where β1 is a coefficient taking into account the bond characteristics of the reinforcement and equals 0.5 and 1 for smooth and deformed steel, respectively;

- \overline{B} β2 is a coefficient taking into account the loading type and equals 0.5 and 1 for long-term and short term loading, respectively.
- Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli • The power n equals 2. For high strength concrete more accuracy is obtained with n equal to 3.

Fibre Composites, FS24 Masoud Motavalli

Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli

Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli The deflection in the uncracked state, a1, and in the fully cracked state, a2, can be calculated by classical elasticity analysis, referring to a flexural stiffness in the uncracked state $E_{c}I_{1}$ and in the fully cracked state E_cl₂, respectively.

Verification of crack widths

Neglecting the tension stiffening effect (ζ = 1) and assuming $\varepsilon_0 \approx 0$

$$
w_k = 2.1 \rho_{c,eff} \cdot \frac{M_k}{E_s d\rho_{eq}} \cdot \frac{1}{(u_s + 0.694u_f)}
$$

Where the ratio of the effective area in tension is:

$$
\rho_{c, \text{eff}} = \frac{A_{c, \text{eff}}}{bd}
$$

Where the ratio of the effective area in tension is:
 $\rho_{c,eff} = \frac{A_{c,eff}}{bd}$
 ρ_{eq} is the equivalent reinforcement ratio and u_s and u_f is the bond

perimeter of the steel and FRP reinforcement.

Externally Bonded F \mathcal{P}_{eq} is the equivalent reinforcement ratio and u_{s} and u_{f} is the bond perimeter of the steel and FRP reinforcement.

Summary of design procedure:

- Before strengthening: check ULS and SLS (just to compare with the strengthened member!).
- From the service moment M₀ prior to strengthening determine ε_0 at the extreme tension fiber.
- Assume full composite action and from the design moment after strengthening
determine the required FRP cross section to fulfill the ULS. Verify the ductility
requirements.
Calculate the deflections in the SLS. If allowable **• Assume full composite action and from the design moment after strengthening** determine the required FRP cross section to fulfill the ULS. Verify the ductility requirements.
- Calculate the deflections in the SLS. If allowable deflection is exceeded, determine the required FRP cross section.
- Calculate the stresses in the concrete, steel and FRP and verify the allowable stresses.
- Verify that the provided FRP bond width is sufficient to control crack widths in the SLS. Increase the FRP width, if necessary, or, given a maximum width, increase the amount (thickness) of FRP.
- Verify the resisting shear force at which bond failure due to shear cracks occurs (ULS).
- Verify the resisting shear force at which bond failure due to shear cracks occurs (ULS).

 Verify that bond failure at the anchorage does not occur. Otherwise mechanical anchorage should be provided.

Externally Bonded Verify that bond failure at the anchorage does not occur. Otherwise mechanical anchorage should be provided.
- Verify that FRP end shear failure is avoided. Provide shear strengthening at the ends if required.
- Verify the accidental situation.
- Verify the shear design resistance of the strengthened member. If needed shear strengthening should be provided.

Strengthening of a Large Scale Pre-Stressed
Bridge Girder Using Carbon Fibre Reinforced
Polymers: Strengthening of a Large Scale Pre-Stressed
Bridge Girder Using Carbon Fibre Reinforced
Polymers:
Comparision between Non Prestressed and Polymers: Strengthening of a Large Scale Pre-Stressed
Bridge Girder Using Carbon Fibre Reinforced
Polymers:
Comparision between Non Prestressed and
Prestressed CFRP Plates Strengthening of a Large Scale Pre-
Bridge Girder Using Carbon Fibre Re
Polymers:
Comparision between Non Prestress
Prestressed CFRP Plates

Polymers:
Comparision between Non Prestressed and
Prestressed CFRP Plates
Externally Bonded FRP: Flexural Fibre Composites, FS24 Masoud Motavalli

Bridge "Viadotto delle Cantine a Capolago"

Bridge "Viadotto delle Cantine a Capolago"

Overview

Reference beam

- **Beam strengthened with non prestressed CFRP plates**
	- 6 Sika CarboDur 512 plates, each 15.5 m long
- Beam strengthened with *pre*stressed CFRP plates
■ the same type and number of plates
■ each plate prestressed approx. 1000 MPa (60 kN)
■ anchorage: Empa gradient method

Externally Bonded FRP: Flexural Fibre Composites **Beam strengthened with prestressed CFRP plates**
	- \blacksquare the same type and number of plates
	- each plate prestressed approx. 1000 MPa (60 kN)
	- anchorage: Empa gradient method

Strengthened with non prestressed CFRP plates

Shear stress from Deformeter-measurement

Behavior during loading

Summary of the three SIA 166 verifications

See next lecture given by Dr. Christoph Czaderski

- 1. End strip debonding failure at the last crack
- 2. Debonding at strong strain increase in strip

 $\vert \mathsf{F}_{_{\sf fcr}} \leq \mathsf{F}_{_{\sf b,R}}$

3. Debonding at flexural cracks

$$
\boxed{\varepsilon_{\text{f}} \leq \varepsilon_{\text{f,lim,d}} = 8\%}
$$

SIA166 "Externally bonded reinforcement"

$$
\tau_{1,lim} = 2.5 \cdot \tau_c = 2.5 \cdot 2.0 = 5.0 MPa
$$

Strengthened with prestressed CFRP plates

CFRP plates prestressed approx. 1000 MPa (60 kN)

Prestressing using Gradient-method

List of Symbols" <Flexural strongthening> M_{\odot} : revisice moment Mcr : cracking moment
staal com-rection at (tensile reinforcement) A_{54} steel cross-rection (Compression reinforcement) As_{2} Position of the neutral axis prior to strengthening x_{o} : cross-section width $6:$ a debth i h = d+ dx Es {Es: steel E-modulus α_s : Io 2: moment of interpretation of the transformed conclude exchange Ly : bond length $\sqrt{2}$ $stip$ $(\equiv s)$ $\begin{array}{lllllllll} \mathcal{A} & = & 0.5 & \text{if} & \text{if } & \text{$

" List of Symbols" < Flexural strengthening> : maximum FRP force, which can be auchored N_{fa}, max b, max: maximum anchorage length ferm : mean concrete tensile strength : FRP tickness ϵ ϵ position of neutral axis at SLS X_{e} $665 < 2.5$ for TRP stress under sensie load, where $2 = \begin{cases} 0.8 : CFRP \\ 0.5 : AFRP \\ 0.3 : GFRP \end{cases}$ a; a; a; recomposition; defection; $\frac{d\phi}{d\phi}$ cracted rights in the E_5 : The distribution coefficient to calculate the
 E_5 : The distribution coefficient to calculate the
 E_5 I₂: flexural Highnen in the Uncracted