Publications 2022
Akkerman, Q. A.; Nguyen, T. P. T.; Boehme, S. C.; Montanarella, F.; Dirin, D. N.; Wechsler, P.; Beiglböck, F.; Rainò, G.; Erni, R.; Katan, C.; et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 2022, 377 (6613), 1406-1412. https://doi.org/10.1126/science.abq3616
Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate-based solid electrolytes for all-solid-state batteries. In Solid state batteries. Volume 1: emerging materials and applications; Gupta, R. K., Ed.; ACS symposium series, Vol. 1413; American Chemical Society: Washington, DC, 2022; pp 353-393. https://doi.org/10.1021/bk-2022-1413.ch014
Bay, M. C.; Grissa, R.; Egorov, K. V.; Asakura, R.; Battaglia, C. Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all-solid-state sodium batteries. Mater. Futures 2022, 1 (3), 031001 (8 p.). https://doi.org/10.1088/2752-5724/ac8947
Becker, M.; Zhao, W.; Pagani, F.; Schreiner, C.; Figi, R.; Dachraoui, W.; Grissa, R.; Kühnel, R. S.; Battaglia, C. Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes. ACS Appl. Energy Mater. 2022, 5 (9), 11133-11141. https://doi.org/10.1021/acsaem.2c01722
Bizzotto, F.; Arenz, M.; Quinson, J. Surfactant-free Ir nanoparticles synthesized in ethanol: catalysts for the oxygen evolution reaction. Mater. Lett. 2022, 308, 131209 (3 pp.). https://doi.org/10.1016/j.matlet.2021.131209
Fu, C.; Homann, G.; Grissa, R.; Rentsch, D.; Zhao, W.; Gouveia, T.; Falgayrat, A.; Lin, R.; Fantini, S.; Battaglia, C. A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries. Adv. Energy Mater. 2022, 12 (27), 2200412 (10 pp.). https://doi.org/10.1002/aenm.202200412
Grissa, R.; Seidl, L.; Dachraoui, W.; Sauter, U.; Battaglia, C. Li7La3Zr2O12 protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 2022, 14 (40), 46001-46009. https://doi.org/10.1021/acsami.2c11375
Landmann, D.; Svaluto-Ferro, E.; Heinz, M. V. F.; Schmutz, P.; Battaglia, C. Elucidating the rate-limiting processes in high-temperature sodium-metal chloride batteries. Adv. Sci. 2022, 9 (17), 2201019 (8 pp.). https://doi.org/10.1002/advs.202201019
Moury, R.; Łodziana, Z.; Remhof, A.; Duchêne, L.; Roedern, E.; Gigante, A.; Hagemann, H. Study of the temperature- and pressure-dependent structural properties of alkali hydrido-closo-borate compounds. Inorg. Chem. 2022, 61 (13), 5224-5233. https://doi.org/10.1021/acs.inorgchem.1c03681
Nilsson, V.; Liu, S.; Battaglia, C.; Kühnel, R. S. Electrolytes with flame retardant pentafluoro(phenoxy)cyclotriphosphazene for nickel-rich layered oxide/graphite cells. Electrochim. Acta 2022, 427, 140867 (6 pp.). https://doi.org/10.1016/j.electacta.2022.140867
Reber, D.; Thurston, J. R.; Becker, M.; Pach, G. F.; Wagoner, M. E.; Robb, B. H.; Waters, S. E.; Marshak, M. P. Mediating anion-cation interactions to improve aqueous flow battery electrolytes. Appl. Mater. Today 2022, 28, 101512 (11 pp.). https://doi.org/10.1016/j.apmt.2022.101512
Reber, D.; Borodin, O.; Becker, M.; Rentsch, D.; Thienenkamp, J. H.; Grissa, R.; Zhao, W.; Aribia, A.; Brunklaus, G.; Battaglia, C.; et al. Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Adv. Funct. Mater. 2022, 32 (20), 2112138 (13 pp.). https://doi.org/10.1002/adfm.202112138
Seidl, L.; Grissa, R.; Zhang, L.; Trabesinger, S.; Battaglia, C. Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Adv. Mater. Interfaces 2022, 9 (8), 2100704 (10 pp.). https://doi.org/10.1002/admi.202100704
Senocrate, A.; Bernasconi, F.; Rentsch, D.; Kraft, K.; Trottmann, M.; Wichser, A.; Bleiner, D.; Battaglia, C. Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Appl. Energy Mater. 2022, 5 (11), 14504-14512. https://doi.org/10.1021/acsaem.2c03054
Sheima, Y.; von Szczepanski, J.; Danner, P. M.; Künniger, T.; Remhof, A.; Frauenrath, H.; Opris, D. M. Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond. ACS Appl. Mater. Interfaces 2022, 14 (35), 40257-40265. https://doi.org/10.1021/acsami.2c05631
Wu, Y.; Zhou, K.; Ren, F.; Ha, Y.; Liang, Z.; Zheng, X.; Wang, Z.; Yang, W.; Zhang, M.; Luo, M.; et al. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy Environ. Sci. 2022, 15 (8), 3470 (13 pp.). https://doi.org/10.1039/d2ee01067d
Zhao, W.; Zou, L.; Zhang, L.; Fan, X.; Zhang, H.; Pagani, F.; Brack, E.; Seidl, L.; Ou, X.; Egorov, K.; et al. Assessing long-term cycling stability of single-crystal versus polycrystalline nickel-rich NCM in pouch cells with 6 mAh cm-2 electrodes. Small 2022, 18 (14), 2107357 (10 pp.). https://doi.org/10.1002/smll.202107357
Zhou, K.; Li, Y.; Ha, Y.; Zhang, M.; Dachraoui, W.; Liu, H.; Zhang, C.; Liu, X.; Liu, F.; Battaglia, C.; et al. A nearly zero-strain Li-rich rock-salt oxide with multielectron redox reactions as a cathode for Li-ion batteries. Chem. Mater. 2022, 34 (21), 9711-9721. https://doi.org/10.1021/acs.chemmater.2c02519