Nanoparticle exposure modeling

There is a clear necessity to assess the environmental risks of engineered nanomaterials (ENM) due to their rapidly increasing application in consumer products, which might lead to an increasing environmental exposure. And understanding the concentration of ENMs released into different environmental compartments (water, air, soil and sediments) due to their production and application provides the elementary step towards quantitative assessment of risks of these novel materials to the environment.

However, their trace amount and insensitivity of analytic measurements for conventional compounds or pollutants very much limited the possibility of measuring their concentration on site. On the other hand, analytical measurement can't differentiate between engineered nanomaterials and naturally occurring nanomaterials. Therefore predicting environmental concentrations (PEC) by applying the Probabilistic Material Flow Model (PMFA) build the basis of a first exposure assessment for ENM.

The expousre models developed in our group have been continuously improved in the last years and have been applied in many case studies.

Current work focuses on:

  • Modeling additional ENM such as iron oxides, silica and quantum dots
  • Regionalization of flows
  • Applying the new dynamic PMFA
Publications

Wigger, H.; Kägi, R.; Wiesner, M.; Nowack, B. (2020) Exposure and possible risks of engineered nanomaterials in the environment – current knowledge and directions for the future. Reviews of Geophysics58: e2020RG000710. pdf

Rajkovic, S.; Bornhöft, N.A.; van der Weijden, R.; Nowack, B.; Adam, V. (2020) Dynamic Probabilistic Material Flow Analysis of engineered nanomaterials in European waste treatment systems. Waste Management 113:118-131. pdf

Stoudmann, N.; Nowack, B.; Som, C. (2019) Prospective environmental risk assessment of nanocellulose for Europe. Environ. Sci. Nano 6: 2520-2531. pdf

Wigger, H.; Nowack, B. (2019) Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts. Nanotoxicology 13: 623-643. pdf

Caballero-Guzman, A.; Nowack, B. (2018) Prospective environmental flows by life cycle stage from five nano-enhanced applications containing CuO, DPP, FeOx, CNT and SiO2. J. Cleaner Production 203: 990-1002. pdf

Adam, V.; Caballero-Guzman, A.; Nowack, B. (2018) Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Environ. Pollut. 243: 17-27. pdf

Wigger, H.; Wohlleben, W.; Nowack, B. (2018) Redefining environmental nanomaterial flows: Consequences of the regulatory nanomaterial definition on the results of environmental exposure models. Environ. Sci. Nano 5: 1372-1385.pdf

Wang, Y.; Nowack, B. (2018) Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions. Environ. Pollut. 235: 589-601. pdf

Adam, V.; Nowack, B. (2017) European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environ. Sci. Nano 4: 1961-1973. pdf

Nowack, B. (2017) Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact 8: 38-47. pdf

Sun, T. S.; Mitrano, D. M.; Bornhöft, N.A.; Scheringer, M.; Hungerbühler, K.; Nowack, B. (2017) Envisioning nano release dynamics in a changing world: using dynamic probabilistic modelling to assess future environmental emissions of engineered nanoparticles. Environ. Sci. Technol. 51: 2854-2863. pdf

Wang, Y.; Deng, L.; Caballero Guzman, A.; Nowack, B. (2016) Are nano iron oxide particles safe? An environmental risk assessment by probabilistic exposure, effect and risk modelling. Nanotoxicology 10:1545-1554. pdf

Sun, T. Y.; Bornhöft, N.; Hungerbühler, K.; Nowack, B. (2016) Dynamic Probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials. Environ. Sci. Technol. 50: 4701-4711. pdf

Caballero-Guzman, A.; Nowack, B. (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ. Pollut. 213: 502-517. pdf

Wang, Y.; Kalinina, A.; Sun, T. Y., Nowack, B. (2016) Probabilistic modeling of the flows and environmental risks of nanosilica. Sci. Total Environ. 545-546: 67-76. pdf

Bornhöft, N. A.; Sun, T. Y.; Hilty, L. M.; Nowack, B. (2016) A Dynamic Probabilistic Material Flow Modeling Method. Environmental Modeling and Software 76: 69-80. pdf

Mahapatra, I.; Sun, T.Y.; Clark, J.; Dobson, P.; Hungerbuehler, K.; Owen, R.; Nowack, B.; Lead, J. (2015) Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J. Nanobiotechnol. 13: 93. pdf

Hincapié, I.; Caballero-Guzman, A.; Hiltbrunner, D.; Nowack, B. (2015) Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Waste Management 43: 398-406. pdf

Sun, T. Y.; Conroy, G.; Donner, E.; Hungerbühler, K.; Lombi, E.; Nowack, B. (2015) Probabilistic modelling of engineered nanomaterial emissions to the environment: A spatio-temporal approach. Environ. Sci. Nano 2:340–351. pdf

Gottschalk, F.; Lassen, C.; Kjølholt, J.; Christensen, F.; Nowack, B. (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public Health 12: 5581-5602. pdf

Caballero-Guzman, A.; Sun, T. Y.; Nowack, B. (2015) Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Management 36: 33–43. pdf

Sun, T. Y.; Gottschalk, F.; Hungerbühler, K.; Nowack, B. (2014) Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185: 69-76. pdf

Bornhöft, N. A.; Nowack, B.; Hilty, L. M. (2013)  Material flow modelling for environmental exposure assessment – A critical review of four approaches using the comparative implementation of an idealized example. In: EnviroInfo 2013, Proceedings of the 27th Conference on Environmental Informatics Edited by B. Page, A.G. Fleischer, J. Göbel, V. Wohlgemuth. 379-388. pdf

Gottschalk, F.; Sun, T.Y.; Nowack, B. (2013) Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 181: 287-300. pdf

Mueller, N. C.; Buha, J.; Wang, J.; Ulrich, A.; Nowack, B. (2013) Modeling the flows of engineered nanomaterials during waste handling. Environmental Science: Processes & Impacts 15: 251-259. pdf

Gottschalk, F.; Ort, C.; Scholz, R.W.; Nowack, B. (2011) Engineered nanomaterials in rivers – exposure scenarios for Switzerland at high spatial and temporal resolution. Environ. Pollut. 159: 3439-3445. pdf

Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29: 1036–1048. pdf

Gottschalk, F.; Scholz, R. W.; Nowack, B. (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles. Environ. Modeling Software. 25: 320–332. pdf

Gottschalk, F. Sonderer, T.; Scholz, R. W.; Nowack, B. (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43: 9216-9222. pdf

Mueller, N. C.; Nowack, B. (2008) Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42: 4447–4453. pdf


Contact

Empa
Technology & Society Laboratory
Lerchenfeldstrasse 5
CH-9014 St. Gallen
Tel.: +41 58 765 76 92

nowack@empa.ch